AMATYC New Life Dev Math Project, Mathematicians, and the New Curriculum in Mathematics

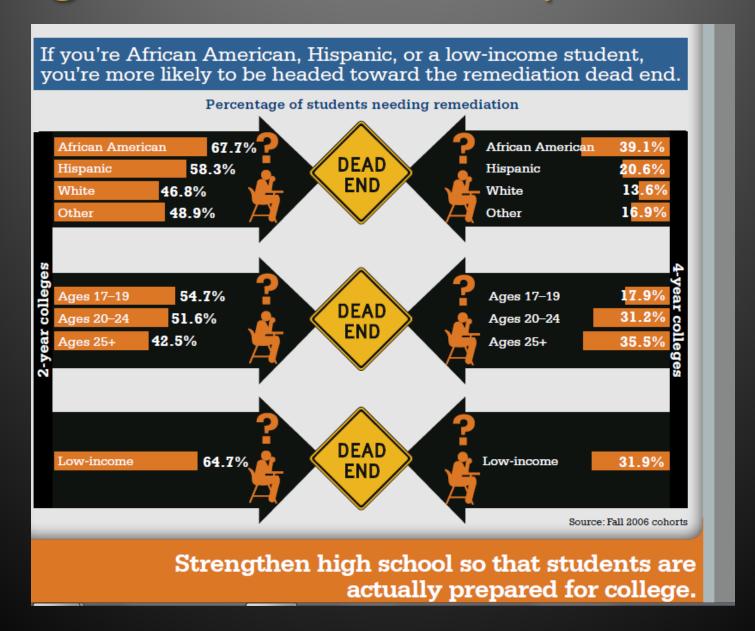
devmathrevival.net

Jack Rotman
Leader: AMATYC New Life Project
(Developmental Mathematics Committee,
AMATYC)

2016 National Summit on Developmental Mathematics March 16

Outline

- Data on Developmental Mathematics
- Traditional Curriculum
- Modern Curriculum (Standards)
- AMATYC New Life Project Curriculum
- Mathematical Literacy Course
- Algebraic Literacy Course
- Implementation Options


Data on Developmental Mathematics

- Demographic Data: Of those who need dev math, what portion completes a college course?
- Research Data: Do those who take dev math do better than similar students who do not?

Demographic Data

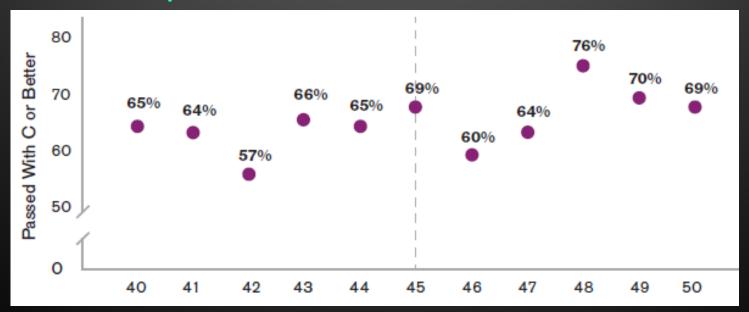
- Classic example: "Bridge to Nowhere"
- Data generated and cited by external groups to influence policy
- Not usable by practitioners to improve the system
- No research question, no null hypotheses ... closer to "USA Today" data nuggets

Bridge to Nowhere: Sample

Some "Nowhere Data"

REMEDIAL EDUCATION

Mathematics and English Success in 2-Year Colleges

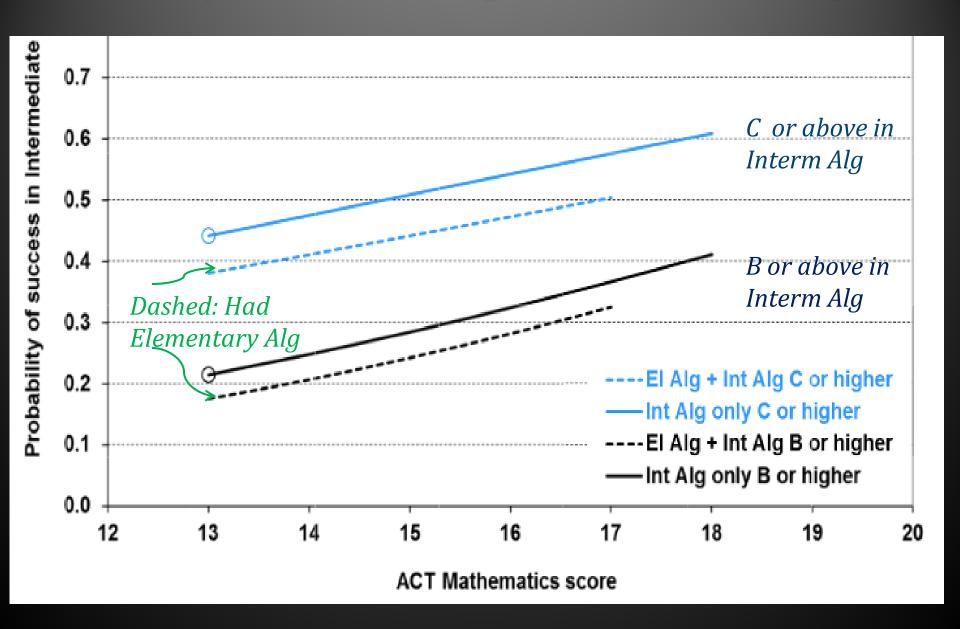

	Hispanic			African American, non-Hispanic			White, non-Hispanic			Other		
	% enrolling in remedial courses	% remedial enrollers completing remedial courses	% remedial enrollers completing remedial and college-level courses	% enrolling in remedial courses	% remedial enrollers completing remedial courses	% remedial enrollers completing remedial and college-level courses	% enrolling in remedial courses	% remedial enrollers completing remedial courses	% remedial enrollers completing remedial and college-level courses	% enrolling in remedial courses	% remedial enrollers completing remedial courses	% remedial enrollers completing remedial and college-level courses
Arizona	30.7%	15.2%	7.7%	25.9%	9.6%	5.2%	12.1%	12.3%	5.8%	24.7%	13.4%	6.2%
Arkansas	29.2%	61.5%	37.2%	38.2%	41.7%	25.5%	22.9%	54.9%	35.4%	25.7%	57.4%	36.1%
California (CSU system only)	NP	NP	NP									
Colorado	19.4%	42.4%	49.6%	23.8%	34.5%	36.5%	9.7%	50.8%	67.1%	10.9%	46.9%	60.4%
Florida	23.6%	51.4%	12.9%	38.1%	45.5%	10.3%	17.9%	50.4%	12.4%	19.9%	58.3%	16.9%
Georgia	10.5%	45.8%	8.4%	16.2%	37.6%	7.8%	6.3%	52.1%	15.8%	9.9%	42.4%	20.1%
Hawaii	22.2%	NP	NP	33.6%	25.0%	9.6%	19.7%	32.4%	NP	32.3%	32.6%	13.7%
Idaho	38.9%	55.7%	17.7%	NP	NP	NP	17.4%	55.0%	15.4%	16.6%	48.0%	NP
Illinois	24.2%	62.4%	26.7%	29.6%	51.5%	13.4%	10.8%	63.5%	26.0%	10.9%	72.2%	36.8%

Research Data

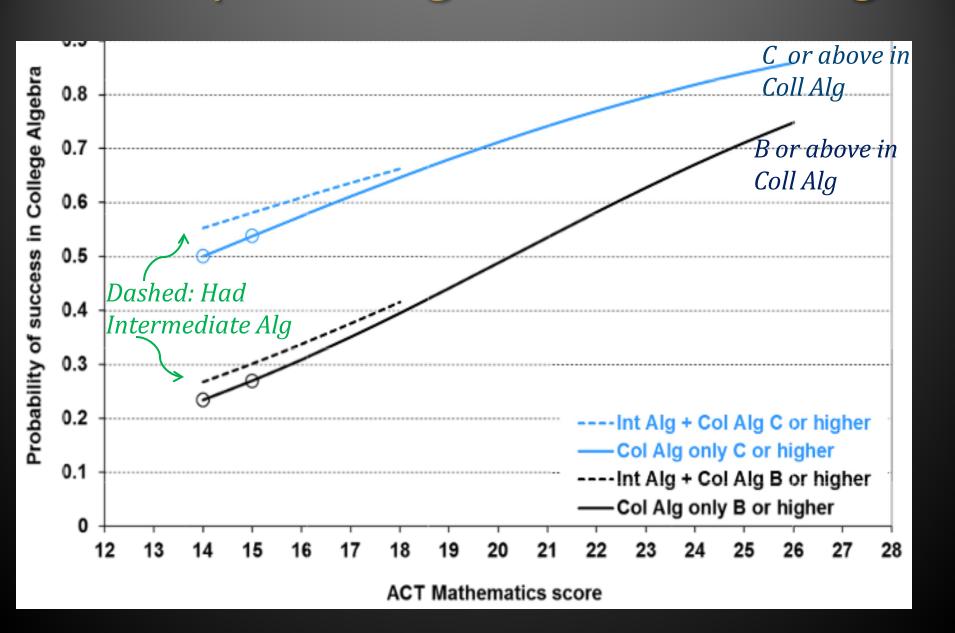
- Comparison of outcomes in different groups
- Generated by academia (usually)
- Results have potential use by practitioners
- Basic research question: Does developmental mathematics improve results compared to 'no treatment'?

Regression Discontinuity

- Examine students with scores just below cutoff (dev math) and those just above cutoff
- Developmental math should create a 'discontinuity' (improved outcome)
- Sample data: Success rates in college math by score on placement test


CCRC Data

- Community College Research Center at Columbia
- Three large studies used. Results in Dev Math:2 null (no effect)
 - 1 negative (dev math led to lower college level pass rates for similar placement scores)
- These studies focused on the interface with college mathematics (ie, intermediate algebra
 - college algebra)


ACT Data

- ACT research study: 75 institutions, over 100,000 students
- All areas of developmental education
- Regression Discontinuity methodology
- Elementary algebra REDUCED the probability of passing intermediate algebra.
- Intermediate algebra increased probability of passing college algebra by 0.02 to 0.05
 - > Statistically significant ... worth a semester?

ACT Report: Elem Alg to Intermed Alg

ACT Report: Progression to Coll Alg

Traditional Curriculum

- Basic Math; Pre-algebra; Beginning Algebra;
 Intermediate Algebra copied from the K-12 curriculum
- Presumption of necessity: got to know all of it

- Developmental algebra is not designed to prepare students ("skills" # "readiness")
- Arithmetic is a dis-service as a college course

Why It's BAD

- The source K-12 curriculum was pre-Standards, skill-based
- No known connection to needed preparation
- Focus on procedure and answers, when we need concepts and reasoning

We have ... TOO MANY COURSES!

The Risk of a Longer Sequence: 2 Dev Courses Assume 70% pass rate, 80% retention

Beginning Algebra

100 students

70 pass

Intermediate Algebra

56 enroll

39 pass

College Math

31 enroll

22 pass

The Risks: Three Dev Math courses (70% pass, 80% retention)

100 students

70 pass

Beginning Algebra

56 students

39 pass

Intermediate Algebra

31 enroll

22 pass

College Math

18 enroll

13 pass

A Solution Must ...

Address known mathematical needs

- Minimize the number of courses (mean of ONE pre-college course; mode zero or one)
- Reflect standards of the mathematics profession

Modern Curricular Standards

- "The Vision" project AMATYC with MAA: voices of partner disciplines
- MAA Curriculum Guide
- MAA CRAFTY College Algebra
- MAA CRAFTY Biology
- AMATYC Standards (Crossroads; Beyond Crossroads)
- AMATYC "Right Stuff" College Algebra

In a Modern Curriculum ...

- Diversity of mathematics: inclusion of multiple domains
- Diversity of learning: knowledge, reasoning, applications
- Complex pedagogy: use of specific methodologies to achieve particular outcomes
- Intentional design: Progression is a reasonable expectation
- Efficiency without sacrificing 'rigor'

New Vision of Mathematics Pathways: Fewer non-credit math courses for most students from the New Life Project Pre-Calculus & STEM: Calculus-Algebraic Modern Pre-Calc based courses Literacy More students can (AL) place directly into STEM: Non-College Algebra Algebraic Literacy Calculus-based **Bridge to Some** (non-Calc-path) courses **College Mathematics** Replaces Intermediate Algebra Math for Elementary **Education Teachers** Liberal Arts and **Mathematical Literacy** Finite Mathematics Numerical for College Students Sense (few (MLCS) start here) Quantitative Reasoning Replaces Beginning Algebra College-level Intro Statistics **Business Math &** Occupational Math

New Life Project, AMATYC Developmental Mathematics Committee [Does not reflect official AMATYC positions or actions]

Basic Science and Technology Courses

Two Pre-college Math Courses

- Mathematical Literacy
- Replaces beginning algebra and pre-algebra
- Prerequisite: basic numeracy
- Algebraic Literacy
- Replaces intermediate algebra
- Prerequisite: Math Lit OR basic algebra

The Plan: Minimize the Path

- Students who need quantitative reasoning OR intro statistics only need Math Literacy
- Students with some basic algebra knowledge start in Algebraic Literacy ... if their program requires College Algebra or similar course
- Only students who need college algebra (or similar course) AND who lack basic algebra knowledge would have 2 pre-college courses

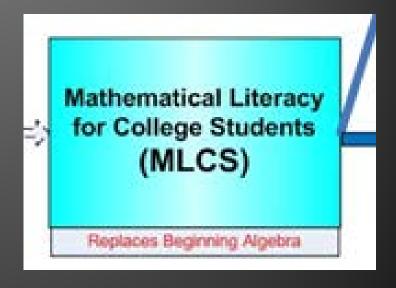
The Idea of Math Lit (MLCS)

- Good mathematics from the beginning
- Focus on central ideas and reasoning

- Symbolism and technology included
- Fewer prerequisite skills (primarily basic numeracy)
- Designed to prepare all students (including STEM-bound students)

Siblings of MLCS

- Similar in purpose to "Foundations of Mathematical Reasoning" in the Dana Center's New Mathways Project
- Core learning outcomes shared:
 - a) MLCS
 - b) Foundations of Mathematical Reasoning
 - c) Quantway I (Carnegie Foundation Pathways)


Math Literacy Connections

- On-ramp to Algebraic Literacy and the STEMpaths
- One-semester prep for Quantitative Reasoning
- One-semester prep for Introductory Statistics

An excellent pre-college course for nursing and other health careers ('guided pathways')

Content Goals of Math Lit

- Numeracy
- Proportional Reasoning
- Algebraic Reasoning
- Functions

Symbolic statements, communication, some procedures in symbolic form

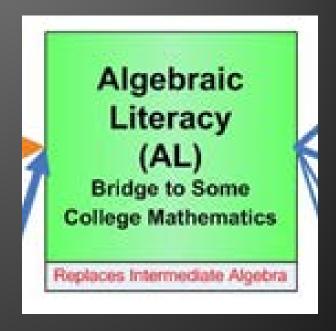
Math Lit: Example Topics

- Quantities and measurements
- Intro to dimensional analysis
- Paired data
- Rate of change
- Equations in two variables
- Linear relationships
- Exponential relationships

The Idea of Algebraic Literacy (AL)

- Good mathematics from the beginning
- Focus on central ideas and reasoning
- Algebraic
 Literacy
 (AL)
 Bridge to Some
 College Mathematics
 Replaces Intermediate Algebra
- Procedures and applications in balance
- Designed to prepare students and even inspire students
- "STEM boosting" outcomes identified (needed for pre-calculus)

Cousins of Algebraic Literacy


- Dana Center "Reasoning with Functions" starts at the same level (two-semester pre-calculus sequence)
 - >> Algebraic Literacy connects to pre-calculus course
- Carnegie Foundation Pathways "Bridge course" has similar purpose

Algebraic Literacy Connections

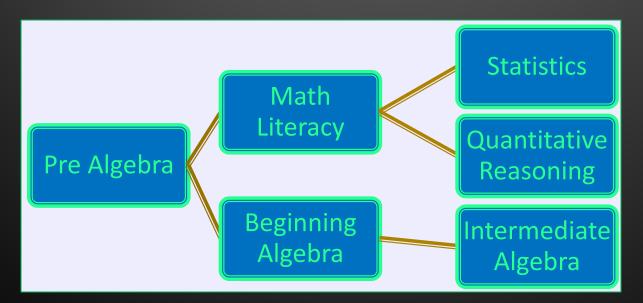
- On-ramp to pre-calculus
 [Math Lit] Algebraic Lit Pre-Calc Calc I
- Prep for mid-skill technical programs and emerging technologies, and science courses
- Compared to Dana Center:
 FMR Reason Function I Reason Function II
 Calc I
- Compared to Carnegie Foundation:
 Quantway I Bridge Pre-Calc Calc I

Content Goals of Algebraic Literacy

- Numbers and Polynomials
- Functions
- Geometry and Trigonometry
- Modeling and Statistics

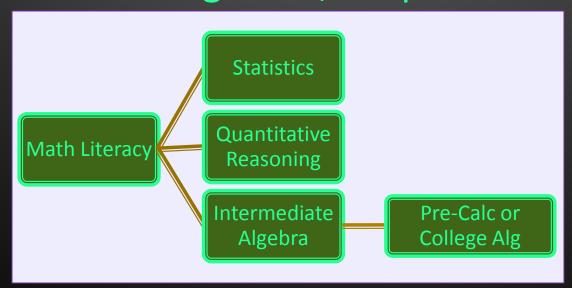
Symbolic and numeric methods; focus on reasoning and connections

Algebraic Lit: Example Topics

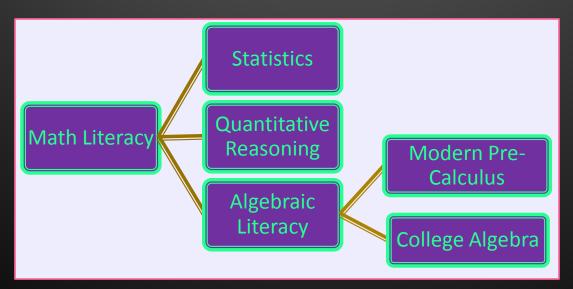

- Properties and equivalent polynomials
- Numeric methods to solve exponential equations
- Symbolic and numeric methods for systems
- Connecting rate of change and the function
- 3 basic trig functions in right triangles
- Models as approximations
- Correlation

Implementation Options

- Low: Math Literacy for Pathways
- Medium: Drop arithmetic & pre-algebra;
 Math Literacy replaces beginning algebra
- High: Drop arithmetic & pre-algebra; Math Literacy replaces beginning algebra ... Plus Algebraic Literacy replaces intermediate algebra


Low Implementation

- Refer students to Math Literacy based on QR or Statistics as general education course
- Maintain beginning algebra for all other students
- Issue: Depends on 'advising' to recruit students


Medium Implementation

- Eliminate all courses below beginning algebra
- Use Math Literacy for all students (going to QR, Statistics, or Intermediate Algebra)
- Provide boot camps or just-in-time remediation for Math Lit prereqs (numeracy)
- Avoids advising issue; simpler structure

High Implementation

- Includes 'medium' (dropping courses before math literacy, replacing beginning algebra) ... AND drop intermediate algebra.
- Use Algebraic Literacy for students going in to precalculus, etc (and for technical programs)
- Place the top 30% to 40% of 'beginning algebra' students in to Algebraic Literacy
- Provides modern curriculum for all students

Wrap Up

- >125 institutions in 24 states have implemented one or both Literacy courses (as of Fall 2015)
- Presentation and handouts available at devmathrevival.net
- Emails and questions welcomed!
 rotmanj@lcc.edu
- Thanks for being here